Discontinuous Galerkin Deterministic Solvers for a Boltzmann-Poisson Model of Hot Electron Transport by Averaged Empirical Pseudopotential Band Structures

نویسندگان

  • Jose Morales-Escalante
  • Irene M. Gamba
  • Yingda Cheng
  • Armando Majorana
  • Chi-Wang Shu
  • James R. Chelikowsky
چکیده

The purpose of this work is to incorporate numerically, in a discontinuous Galerkin (DG) solver of a Boltzmann-Poisson model for hot electron transport, an electronic conduction band whose values are obtained by the spherical averaging of the full band structure given by a local empirical pseudopotential method (EPM) around a local minimum of the conduction band for silicon, as a midpoint between a radial band model and an anisotropic full band, in order to provide a more accurate physical description of the electron group velocity and conduction energy band structure in a semiconductor. This gives a better quantitative description of the transport and collision phenomena that fundamentally define the behaviour of the Boltzmann Poisson model for electron transport used in this work. The numerical values of the derivatives of this conduction energy band, needed for the description of the electron group velocity, are obtained by means of a cubic spline interpolation. The EPM-Boltzmann-Poisson transport with this spherically averaged EPM calculated energy surface is numerically simulated and compared to the output of traditional analytic band models such as the parabolic and Kane bands, numerically implemented too, for the case of 1D n+ − n − n+ silicon diodes with 400nm and 50nm channels. Quantitative differences are observed in the kinetic moments related to the conduction energy band used, such as mean velocity, average energy, and electric current (momentum).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin methods for the Boltzmann-Poisson systems in semiconductor device simulations

We are interested in the deterministic computation of the transients for the Boltzmann-Poisson system describing electron transport in semiconductor devices. The main difficulty of such computation arises from the very high dimensions of the model, making it necessary to use relatively coarse meshes and hence requiring the numerical solver to be stable and to have good resolution under coarse m...

متن کامل

Discontinuous Galerkin Solver for Boltzmann-Poisson Transients

We present results of a discontinuous Galerkin scheme applied to deterministic computations of the transients for the Boltzmann-Poisson system describing electron transport in semiconductor devices. The collisional term models optical-phonon interactions which become dominant under strong energetic conditions corresponding to nano-scale active regions under applied bias. The proposed numerical ...

متن کامل

A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations

We are interested in the deterministic computation of the transients for the BoltzmannPoisson system describing electron transport in semiconductor devices. The main difficulty of such computation arises from the very high dimensions of the model, making it necessary to use relatively coarse meshes and hence requiring the numerical solver to be stable and to have good resolution under coarse me...

متن کامل

A discontinuous Galerkin solver for Boltzmann Poisson systems in nano devices

In this paper, we present results of a discontinuous Galerkin (DG) scheme applied to deterministic computations of the transients for the Boltzmann-Poisson system describing electron transport in semiconductor devices. The collisional term models optical-phonon interactions which become dominant under strong energetic conditions corresponding to nano-scale active regions under applied bias. The...

متن کامل

Galerkin solver for Boltzmann Poisson systems in nano devices

In this paper, we present results of a discontinuous Galerkin (DG) scheme applied to deterministic computations of the transients for the Boltzmann-Poisson system describing electron transport in semiconductor devices. The collisional term models optical-phonon interactions which become dominant under strong energetic conditions corresponding to nano-scale active regions under applied bias. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1512.05403  شماره 

صفحات  -

تاریخ انتشار 2015